The integral equation methods for the perturbed Helmholtz eigenvalue problems
نویسندگان
چکیده
منابع مشابه
The integral equation methods for the perturbed Helmholtz eigenvalue problems
It is well known that the main difficulty in solving eigenvalue problems under shape deformation relates to the continuation of multiple eigenvalues of the unperturbed configuration. These eigenvalues may evolve, under shape deformation, as separated, distinct eigenvalues. In this paper, we address the integral equation method in the evaluation of eigenfunctions and the corresponding eigenvalue...
متن کاملFast integral equation methods for the modified Helmholtz equation
Talk Abstract We present an efficient integral equation method approach to solve the forced heat equation, ut(x) − ∆u(x) = F (x, u, t), in a two dimensional, multiply connected domain, with Dirichlet boundary conditions. We first discretize in time, which is known as Rothe’s method, resulting in a non-homogeneous modified Helmholtz equation that is solved at each time step. We formulate the sol...
متن کاملThe radial basis integral equation method for 2D Helmholtz problems
A meshless method for the solution of 2D Helmholtz equation has been developed by using the Boundary Integral Equation (BIE) combined with Radial Basis Function (RBF) interpolations. BIE is applied by using the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source point always in the ...
متن کاملIntegral Equation Methods for Free Boundary Problems∗
We outline a unified approach for treating free boundary problems arising in Finance using integral equation methods. Starting with the PDE formulations of the free boundary problems, we show how to derive nonlinear integral equations for the free boundaries in a variety of Finance applications. Methods to treat theoretical (existence, uniqueness) questions and analytical and numerical approxim...
متن کاملGaussian Beam Methods for the Helmholtz Equation
In this work we construct Gaussian beam approximations to solutions of the high frequency Helmholtz equation with a localized source. Under the assumption of non-trapping rays we show error estimates between the exact outgoing solution and Gaussian beams in terms of the wave number k, both for single beams and superposition of beams. The main result is that the relative local L2 error in the be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2005
ISSN: 0161-1712,1687-0425
DOI: 10.1155/ijmms.2005.1201